1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
use super::poison::{self, LockResult, TryLockError, TryLockResult};
use futures_core::future::{BoxFuture, LocalBoxFuture};
use std::fmt;
use tokio::sync::MutexGuard;

/// A cancel-safe and panic-safe variant of [`tokio::sync::Mutex`].
///
/// A `RobustMutex` is a wrapper on top of a [`tokio::sync::Mutex`] which adds two further
/// guarantees: *panic safety* and *cancel safety*. Both of these guarantees are implemented to
/// ensure that mutex invariants aren't violated to the greatest extent possible.
///
/// # Motivation
///
/// A mutex is a synchronization structure which allows only one task to access some data at a time.
/// The general idea behind a mutex is that the data it owns has some *invariants*. When a task
/// acquires a lock on the mutex, it enters a *critical section*. Within this critical section, the
/// invariants can temporarily be violated. It is expected that the task will restore those
/// invariants before releasing the lock.
///
/// For example, let's say that we have a mutex which guards two `HashMap`s, with the invariant that
/// mutex are that the two `HashMap`s always contain the same keys. With a Tokio mutex, you might
/// write something like:
///
/// ```rust
/// use std::collections::HashMap;
/// use tokio::sync::Mutex;
///
/// struct MyStruct {
///     map1: HashMap<String, String>,
///     map2: HashMap<String, u32>,
/// }
///
/// impl MyStruct {
///     fn new() -> Self {
///         Self {
///             map1: HashMap::new(),
///             map2: HashMap::new(),
///         }
///     }
/// }
///
/// #[tokio::main]
/// async fn main() {
///     let mutex = Mutex::new(MyStruct::new());
///
///     let mut guard = mutex.lock().await;
///     guard.map1.insert("hello".to_owned(), "world".to_owned());  // (1)
///     // ... some code in between
///     guard.map2.insert("hello".to_owned(), 42);  // (2)
///
///     // (This happens implicitly but is made explicit here.)
///     std::mem::drop(guard);
/// }
/// ```
///
/// At point (1) we've temporarily violated the invariant that `map1` and `map2` contain the same
/// keys. However, at point (2) the invariant is restored.
///
/// * But what if the task panics between (1) and (2)? In that case, the mutex is left in a state
///   where the invariants are violated. This is a problem because this is an inconsistent state --
///   other tasks which acquire the lock can no longer assume that the invariants are upheld.
///
///   This is the problem that *panic safety* solves.
///
/// * In async code, what if there's an await point between (1) and (2), and the future is dropped
///   at that await point? Then, too, the invariants are violated. With synchronous code the only
///   possible interruptions in the middle of a critical section are due to panics, but with async
///   code cancellations are a fact of life.
///
///   This is the problem that *cancel safety* solves.
///
/// Both of these problems can also be solved in an ad-hoc manner (for example, by carefully
/// checking for and restoring invariants at the start of each critical section). However, **the
/// goal of this mutex is to provide a systematic, if conservative, solution to these problems.**
///
/// # Panic safety
///
/// Like [`std::sync::Mutex`] but *unlike* [`tokio::sync::Mutex`], this mutex implements a strategy
/// called "poisoning" where a mutex is considered poisoned whenever a task panics within one of the
/// [`ActionPermit`] perform methods. Once a mutex is poisoned, all other tasks are unable to access
/// the data by default.
///
/// This means that the [`lock`](Self::lock) and [`try_lock`](Self::try_lock) methods return a
/// [`Result`] which indicates whether a mutex has been poisoned or not. Most usage of a mutex will
/// simply [`unwrap()`](Result::unwrap) these results, propagating panics among tasks to ensure that
/// a possibly invalid invariant is not witnessed.
///
/// A poisoned mutex, however, does not prevent all access to the underlying data. The
/// [`PoisonError`](crate::sync::PoisonError) type has an
/// [`into_inner`](crate::sync::PoisonError::into_inner) method which will return the guard that
/// would have otherwise been returned on a successful lock. This allows access to the data, despite
/// the lock being poisoned.
///
/// # Cancel safety
///
/// To guard against async cancellations in the middle of the critical section, the mutex uses a
/// callback approach. This is done by returning [`ActionPermit`] instances which provide access to
/// the guarded data in two ways:
///
/// 1. [`perform()`], which accepts a synchronous closure that cannot have await points within it.
/// 2. [`perform_async_boxed()`] and [`perform_async_boxed_local()`], which accept asynchronous
///    closures. If the future returned by these methods is cancelled in the middle of execution,
///    the mutex is marked as poisoned.
///
/// In general, it is recommended that [`perform()`] be used and mutexes not be held across await
/// points at all, since that can cause performance and correctness issues.
///
/// Not using an RAII guard like [`std::sync::MutexGuard`] does mean that there are patterns that
/// are not possible with this mutex. For example, you cannot perform a pattern where:
///
/// 1. You acquire a lock *L₁*.
/// 2. You acquire a second lock *L₂*.
/// 3. You release *L₁*.
/// 4. You release *L₂*.
///
/// If you really do need to do this or more complicated patterns, [`std::sync::Mutex`] and
/// [`tokio::sync::Mutex`] remain available.
///
/// # Examples
///
/// The above example, rewritten to use a `RobustMutex`, would look like:
///
/// ```
/// use cancel_safe_futures::sync::RobustMutex;
/// use std::collections::HashMap;
///
/// struct MyStruct {
///     map1: HashMap<String, String>,
///     map2: HashMap<String, u32>,
/// }
///
/// impl MyStruct {
/// # /*
///     fn new() -> Self { /* ... */ }
/// # */
/// #    fn new() -> Self {
/// #        Self {
/// #            map1: HashMap::new(),
/// #            map2: HashMap::new(),
/// #        }
/// #    }
/// }
///
/// #[tokio::main]
/// async fn main() {
///     let mutex = RobustMutex::new(MyStruct::new());
///
///     let mut permit = mutex.lock().await.unwrap();  // note unwrap() here
///     permit.perform(|data| {
///         data.map1.insert("hello".to_owned(), "world".to_owned());  // (1)
///         // ... some code in between
///         data.map2.insert("hello".to_owned(), 42);  // (2)
///     });
/// }
/// ```
///
/// # Features
///
/// Basic mutex operations are supported. In the future, this will support:
///
/// - An `OwnedActionPermit`, similar to [`tokio::sync::OwnedMutexGuard`].
///
/// Mapped action permits similar to [`tokio::sync::MappedMutexGuard`] will likely not be supported
/// because it's hard to define panic and cancel safety in that scenario.
///
/// # Why "robust"?
///
/// The name is derived from POSIX's [`pthread_mutexattr_getrobust` and
/// `pthread_mutexattr_setrobust`](https://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_mutexattr_getrobust.html).
/// These functions aim to achieve very similar goals to this mutex, except in slightly different
/// circumstances (*thread* cancellations and terminations rather than *task* cancellations and
/// panics).
///
/// [`perform()`]: ActionPermit::perform
/// [`perform_async_boxed()`]: ActionPermit::perform_async_boxed
/// [`perform_async_boxed_local()`]: ActionPermit::perform_async_boxed_local
pub struct RobustMutex<T: ?Sized> {
    poison: poison::Flag,
    inner: tokio::sync::Mutex<T>,
}

impl<T: ?Sized> RobustMutex<T> {
    /// Creates a new lock in an unlocked state ready for use.
    ///
    /// # Examples
    ///
    /// ```
    /// use cancel_safe_futures::sync::RobustMutex;
    ///
    /// let lock = RobustMutex::new(5);
    /// ```
    #[track_caller]
    pub fn new(value: T) -> Self
    where
        T: Sized,
    {
        Self {
            inner: tokio::sync::Mutex::new(value),
            poison: poison::Flag::new(),
        }
    }

    /// Creates a new lock in an unlocked state ready for use.
    ///
    /// # Examples
    ///
    /// ```
    /// use cancel_safe_futures::sync::RobustMutex;
    ///
    /// static LOCK: RobustMutex<i32> = RobustMutex::const_new(5);
    /// ```
    #[cfg(all(feature = "parking_lot", not(test)))]
    #[cfg_attr(doc_cfg, doc(cfg(feature = "parking_lot")))]
    pub const fn const_new(value: T) -> Self
    where
        T: Sized,
    {
        Self {
            inner: tokio::sync::Mutex::const_new(value),
            poison: poison::Flag::new(),
        }
    }

    /// Locks this mutex, causing the current task to yield until the lock has been acquired.  When
    /// the lock has been acquired, function returns a [`ActionPermit`].
    ///
    /// # Errors
    ///
    /// If another user of this mutex panicked while holding the mutex, then this call will return
    /// an error once the mutex is acquired.
    ///
    /// # Cancel safety
    ///
    /// This method uses a queue to fairly distribute locks in the order they were requested.
    /// Cancelling a call to `lock` makes you lose your place in the queue.
    ///
    /// # Examples
    ///
    /// ```
    /// use cancel_safe_futures::sync::RobustMutex;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let mutex = RobustMutex::new(1);
    ///
    ///     let mut permit = mutex.lock().await.unwrap();
    ///     permit.perform(|n| *n = 2);
    /// }
    /// ```
    pub async fn lock(&self) -> LockResult<ActionPermit<'_, T>> {
        let guard = self.inner.lock().await;
        ActionPermit::new(guard, &self.poison)
    }

    /// Blockingly locks this `Mutex`. When the lock has been acquired, the function returns a
    /// [`ActionPermit`].
    ///
    /// This method is intended for use cases where you need to use this mutex in asynchronous code
    /// as well as in synchronous code.
    ///
    /// # Errors
    ///
    /// If another user of this mutex panicked while holding the mutex, then this call will return
    /// an error once the mutex is acquired.
    ///
    /// # Panics
    ///
    /// This function panics if called within an asynchronous execution context.
    ///
    /// # Examples
    ///
    /// ```
    /// use cancel_safe_futures::sync::RobustMutex;
    /// use std::sync::Arc;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let mutex = Arc::new(RobustMutex::new(1));
    ///     let permit = mutex.lock().await.unwrap();
    ///
    ///     let mutex1 = Arc::clone(&mutex);
    ///     let blocking_task = tokio::task::spawn_blocking(move || {
    ///         // This shall block until the `lock` is released.
    ///         let permit = mutex1.blocking_lock().unwrap();
    ///         permit.perform(|n| *n = 2);
    ///     });
    ///
    ///     permit.perform(|n| { assert_eq!(*n, 1) });
    ///
    ///     // Await the completion of the blocking task.
    ///     blocking_task.await.unwrap();
    ///
    ///     // Assert uncontended.
    ///     let permit = mutex.try_lock().unwrap();
    ///     permit.perform(|n| { assert_eq!(*n, 2) });
    /// }
    /// ```
    #[track_caller]
    #[cfg_attr(doc_cfg, doc(alias = "lock_blocking"))]
    pub fn blocking_lock(&self) -> LockResult<ActionPermit<'_, T>> {
        let guard = self.inner.blocking_lock();
        ActionPermit::new(guard, &self.poison)
    }

    /// Attempts to acquire the lock, returning an [`ActionPermit`] if successful.
    ///
    /// # Errors
    ///
    /// Returns [`TryLockError::WouldBlock`] if the lock is currently held somewhere else.
    ///
    /// Returns [`TryLockError::Poisoned`] if another thread panicked while holding the lock.
    ///
    /// # Examples
    ///
    /// ```
    /// use cancel_safe_futures::sync::RobustMutex;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let mutex = RobustMutex::new(1);
    ///
    ///     let permit = mutex.try_lock().unwrap();
    ///     permit.perform(|n| {
    ///         assert_eq!(*n, 1);
    ///     });
    /// }
    /// ```
    pub fn try_lock(&self) -> TryLockResult<ActionPermit<'_, T>> {
        match self.inner.try_lock() {
            Ok(guard) => ActionPermit::new(guard, &self.poison).map_err(TryLockError::Poisoned),
            Err(_) => Err(TryLockError::WouldBlock),
        }
    }

    /// Determines whether the mutex is poisoned.
    ///
    /// This is equivalent to [`Self::is_panic_poisoned`]` || `[`Self::is_cancel_poisoned`].
    ///
    /// If another task is active, the mutex can still become poisoned at any time. You should not
    /// trust a `false` value for program correctness without additional synchronization.
    #[inline]
    pub fn is_poisoned(&self) -> bool {
        self.poison.get_flags() != poison::NO_POISON
    }

    /// Determines whether the mutex is poisoned due to a panic.
    ///
    /// If another task is active, the mutex can still become poisoned at any time. You should not
    /// trust a `false` value for program correctness without additional synchronization.
    ///
    /// # Examples
    ///
    /// ```
    /// use cancel_safe_futures::sync::RobustMutex;
    /// use std::sync::Arc;
    ///
    /// # #[tokio::main]
    /// # async fn main() {
    ///
    /// let mutex = Arc::new(RobustMutex::new(0));
    /// let c_mutex = Arc::clone(&mutex);
    ///
    /// let _ = tokio::task::spawn(async move {
    ///     let permit = c_mutex.lock().await.unwrap();
    ///     permit.perform(|_| {
    ///         panic!(); // the mutex gets poisoned
    ///     });
    /// }).await;
    ///
    /// assert!(mutex.is_panic_poisoned());
    /// # }
    /// ```
    #[inline]
    pub fn is_panic_poisoned(&self) -> bool {
        self.poison.get_flags() & poison::PANIC_POISON != 0
    }

    /// Determines whether this mutex is poisoned due to a cancellation.
    ///
    /// If another task is active, the mutex can still become poisoned at any time. You should not
    /// trust a `false` value for program correctness without additional synchronization.
    ///
    /// # Examples
    ///
    /// ```
    /// use cancel_safe_futures::sync::RobustMutex;
    /// use futures::FutureExt;
    /// use std::sync::Arc;
    ///
    /// # #[tokio::main]
    /// # async fn main() {
    ///
    /// let mutex = Arc::new(RobustMutex::new(0));
    /// let c_mutex = Arc::clone(&mutex);
    ///
    /// tokio::task::spawn(async move {
    ///     let permit = c_mutex.lock().await.unwrap();
    ///     let fut = permit.perform_async_boxed(|n| async move {
    ///         // Sleep for 1 second.
    ///         tokio::time::sleep(std::time::Duration::from_secs(1)).await;
    ///         *n = 1;
    ///     }.boxed());
    ///     tokio::select! {
    ///         _ = fut => {
    ///             panic!("this branch should not be encountered");
    ///         }
    ///         _ = tokio::time::sleep(std::time::Duration::from_millis(100)) => {
    ///             // Exit the task, causing `fut` to be cancelled after 100ms.
    ///         }
    ///     }
    /// }).await.unwrap();
    ///
    /// assert!(mutex.is_cancel_poisoned());
    ///
    /// # }
    /// ```
    #[inline]
    pub fn is_cancel_poisoned(&self) -> bool {
        self.poison.get_flags() & poison::CANCEL_POISON != 0
    }

    /// Returns a mutable reference to the underlying data.
    ///
    /// Since this call borrows the `Mutex` mutably, no actual locking needs to
    /// take place -- the mutable borrow statically guarantees no locks exist.
    ///
    /// # Examples
    ///
    /// ```
    /// use cancel_safe_futures::sync::RobustMutex;
    ///
    /// let mut mutex = RobustMutex::new(1);
    ///
    /// let n = mutex.get_mut();
    /// *n = 2;
    /// ```
    #[inline]
    pub fn get_mut(&mut self) -> &mut T {
        self.inner.get_mut()
    }

    /// Consumes the mutex, returning the underlying data.
    ///
    /// # Errors
    ///
    /// If another user of this mutex panicked while holding the mutex, then this call will return
    /// an error.
    ///
    /// # Examples
    ///
    /// ```
    /// use cancel_safe_futures::sync::RobustMutex;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let mutex = RobustMutex::new(1);
    ///
    ///     let n = mutex.into_inner().unwrap();
    ///     assert_eq!(n, 1);
    /// }
    /// ```
    pub fn into_inner(self) -> LockResult<T>
    where
        T: Sized,
    {
        let data = self.inner.into_inner();
        poison::map_result(self.poison.borrow(), |()| data)
    }
}

impl<T> Default for RobustMutex<T>
where
    T: Default,
{
    #[inline]
    fn default() -> Self {
        Self::new(Default::default())
    }
}

impl<T> From<T> for RobustMutex<T> {
    #[inline]
    fn from(t: T) -> Self {
        Self::new(t)
    }
}

impl<T: ?Sized + fmt::Debug> fmt::Debug for RobustMutex<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let mut d = f.debug_struct("RobustMutex");
        match self.try_lock() {
            Ok(inner) => d.field("data", &inner.guard),
            Err(_) => d.field("data", &format_args!("<locked>")),
        };
        d.field("poisoned", &self.poison);
        d.finish()
    }
}

/// A token that grants the ability to run one closure against the data guarded by a
/// [`RobustMutex`].
///
/// This is produced by the `lock` family of operations on [`RobustMutex`] and is intended to
/// provide robust cancel safety.
///
/// For more information, see the documentation for [`RobustMutex`].
///
/// # Why is this its own type?
///
/// A question some users might have is: why not combine `lock` and `perform`? Why have this type
/// that sits in the middle?
///
/// The answer is that this structure is necessary to provide cancel safety. Consider what happens
/// with a hypothetical `lock_and_perform` function. Let's say we use it in a `select!` statement
/// thus:
///
/// ```rust,no_run
/// use std::sync::LockResult;
/// use std::time::Duration;
/// use tokio::time::sleep;
///
/// # /*
/// struct MyMutex<T> { /* ... */ }
/// # */
/// # struct MyMutex<T> { _marker: std::marker::PhantomData<T> }
///
/// impl<T> MyMutex<T> {
///     fn new(data: T) -> Self {
///         /* ... */
///         todo!();
///     }
///     async fn lock_and_perform<U>(self, action: impl FnOnce(&mut T) -> U) -> LockResult<U> {
///         /* ... */
/// #       todo!()
///     }
/// }
///
/// // Represents some kind of type that is unique and can't be cloned.
/// struct NonCloneableType(u32);
///
/// #[tokio::main]
/// async fn main() {
///     let mutex = MyMutex::new(1);
///     let data = NonCloneableType(2);
///     let sleep = sleep(Duration::from_secs(1));
///
///     let fut = mutex.lock_and_perform(|n| {
///         *n = data.0;
///     });
///
///     tokio::select! {
///         _ = fut => {
///             /* ... */
///         }
///         _ = sleep => {
///             /* ... */
///         }
///     }
/// }
/// ```
///
/// Then, if `sleep` fires before `fut`, the non-cloneable type is dropped without being used. This
/// leads to cancel unsafety.
///
/// This is very similar to the cancel unsafety that [`futures::SinkExt::send`] has, and that this
/// crate's [`SinkExt::reserve`](crate::SinkExt::reserve) solves.
#[derive(Debug)]
pub struct ActionPermit<'a, T: ?Sized> {
    poison: &'a poison::Flag,
    guard: MutexGuard<'a, T>,
}

impl<'a, T: ?Sized> ActionPermit<'a, T> {
    /// Invariant: the mutex must be locked when this is called. (This is ensured by requiring a
    /// guard).
    #[inline]
    fn new(guard: MutexGuard<'a, T>, poison: &'a poison::Flag) -> LockResult<Self> {
        poison::map_result(poison.borrow(), |()| Self { poison, guard })
    }

    /// Runs a closure with access to the guarded data, consuming the permit in the process and
    /// unlocking the mutex once the closure completes.
    ///
    /// This is a synchronous closure, which means that it cannot have await points within it. This
    /// guarantees cancel safety for this mutex.
    ///
    /// # Notes
    ///
    /// `action` is *not* run inside a synchronous context. This means that operations like
    /// [`tokio::sync::mpsc::Sender::blocking_send`] will panic inside `action`.
    ///
    /// If `action` panics, the mutex is marked poisoned.
    ///
    /// # Examples
    ///
    /// ```
    /// use cancel_safe_futures::sync::RobustMutex;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let mutex = RobustMutex::new(1);
    ///
    ///     let permit = mutex.lock().await.unwrap();
    ///     permit.perform(|n| *n = 2);
    /// }
    /// ```
    pub fn perform<R, F>(mut self, action: F) -> R
    where
        F: FnOnce(&mut T) -> R,
    {
        let poison_guard = self.poison.guard_assuming_no_poison();
        let _poisoner = Poisoner {
            poison: self.poison,
            poison_guard,
        };

        action(&mut *self.guard)

        // Note: we're relying on the Drop impl for `_poisoner` to unlock the mutex.
    }

    /// Runs an asynchronous block in the context of the guarded data, consuming the permit in the
    /// process and unlocking the mutex once the block completes.
    ///
    /// In general, holding asynchronous locks across await points can lead to surprising
    /// performance issues. It is strongly recommended that [`perform`](Self::perform) is used, or
    /// that the code is rewritten to use message passing.
    ///
    /// # Notes
    ///
    /// The mutex is marked poisoned if any of the following occur:
    ///
    /// * The future returned by `action` panics.
    /// * The future returned by this async function is cancelled before being driven to completion.
    ///
    /// Due to [limitations in stable
    /// Rust](https://kevincox.ca/2022/04/16/rust-generic-closure-lifetimes), this accepts a dynamic
    /// [`BoxFuture`] rather than a generic future. Once [async
    /// closures](https://rust-lang.github.io/async-fundamentals-initiative/roadmap/async_closures.html)
    /// are stabilized, this will switch to them.
    ///
    /// # Examples
    ///
    /// ```
    /// use cancel_safe_futures::sync::RobustMutex;
    /// use futures::FutureExt;  // for FutureExt::boxed()
    /// use std::time::Duration;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let mutex = RobustMutex::new(1);
    ///
    ///     let permit = mutex.lock().await.unwrap();
    ///     permit.perform_async_boxed(|n| {
    ///         async move {
    ///             tokio::time::sleep(
    ///                 std::time::Duration::from_millis(100),
    ///             ).await;
    ///             *n = 2;
    ///         }
    ///         .boxed()
    ///     }).await;
    ///
    ///     // Check that the new value of the mutex is 2.
    ///     let permit = mutex.lock().await.unwrap();
    ///     permit.perform(|n| assert_eq!(*n, 2));
    /// }
    /// ```
    pub async fn perform_async_boxed<R, F>(mut self, action: F) -> R
    where
        F: for<'lock> FnOnce(&'lock mut T) -> BoxFuture<'lock, R>,
    {
        let poison_guard = self.poison.guard_assuming_no_poison();
        let mut poisoner = AsyncPoisoner {
            poison: self.poison,
            poison_guard,
            terminated: false,
        };
        // At this point, the future can:
        // * panic, in which case both the panic and (since the future isn't complete) cancel poison
        //   flags are set.
        // * be dropped without being driven to completion, in which case the cancel poison flag is
        //   set.
        let ret = action(&mut *self.guard).await;

        // At this point, the future has completed.
        poisoner.terminated = true;
        ret
    }

    /// Runs a non-`Send` asynchronous block in the context of the guarded data, consuming the
    /// permit in the process and unlocking the mutex once the block completes.
    ///
    /// This is a variant of [`perform_async_boxed`](Self::perform_async_boxed) that allows the
    /// future to be non-`Send`.
    pub async fn perform_async_boxed_local<R, F>(mut self, action: F) -> R
    where
        F: for<'lock> FnOnce(&'lock mut T) -> LocalBoxFuture<'lock, R>,
    {
        let poison_guard = self.poison.guard_assuming_no_poison();
        let mut poisoner = AsyncPoisoner {
            poison: self.poison,
            poison_guard,
            terminated: false,
        };
        // At this point, the future can:
        // * panic, in which case both the panic and (since the future isn't complete) cancel poison
        //   flags are set.
        // * be dropped without being driven to completion, in which case the cancel poison flag is
        //   set.
        let ret = action(&mut *self.guard).await;

        // At this point, the future has completed.
        poisoner.terminated = true;
        ret
    }
}

#[clippy::has_significant_drop]
struct Poisoner<'a> {
    poison: &'a poison::Flag,
    poison_guard: poison::Guard,
}

impl<'a> Drop for Poisoner<'a> {
    #[inline]
    fn drop(&mut self) {
        self.poison.done(&self.poison_guard, false);
    }
}

#[clippy::has_significant_drop]
struct AsyncPoisoner<'a> {
    poison: &'a poison::Flag,
    poison_guard: poison::Guard,
    terminated: bool,
}

impl<'a> Drop for AsyncPoisoner<'a> {
    #[inline]
    fn drop(&mut self) {
        self.poison.done(&self.poison_guard, !self.terminated);
    }
}